题目内容
【题目】如图所示,AB是⊙O的直径,点C是 的中点,∠COB=60°,过点C作CE⊥AD,交AD的延长线于点E
(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.
【答案】
(1)证明:
连接OD,如图,
∵C是 的中点,
∴∠BOC=∠COD=60°,
∴∠AOD=60°,且OA=OD,
∴△AOD为等边三角形,
∴∠EAB=∠COB,
∴OC∥AE,
∴∠OCE+∠AEC=180°,
∵CE⊥AE,
∴∠OCE=180°﹣90°=90°,即OC⊥EC,
∵OC为圆的半径,
∴CE为圆的切线
(2)解:
四边形AOCD是菱形,理由如下:
由(1)可知△AOD和△COD均为等边三角形,
∴AD=AO=OC=CD,
∴四边形AOCD为菱形.
【解析】(1)连接OD,可证明△AOD为等边三角形,可得到∠EAO=∠COB,可证明OC∥AE,可证得结论;(2)利用△OCD和△AOD都是等边三角形可证得结论.
【考点精析】通过灵活运用菱形的判定方法和切线的判定定理,掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线即可以解答此题.
【题目】近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
使用次数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 11 | 15 | 23 | 28 | 18 | 5 |
(1)这天部分出行学生使用共享单车次数的中位数是 ,众数是 ,该中位数的意义是 ;
(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)
(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?