题目内容
【题目】含60°角的菱形A1B1C1B2,A2B2C2B3,A3B3C3B4,…,按如图的方式放置在平面直角坐标系xOy中,点A1,A2,A3,…,和点B1,B2,B3,B4,…,分别在直线y=kx和x轴上.已知B1(2,0),B2(4,0),则点A1的坐标是_____;点A3的坐标是_____;点An的坐标是____(n为正整数).
【答案】(3,), (12,4), ( ,n).
【解析】
利用菱形的性质得出△A1B1B2是等边三角形,进而得出A1坐标,进而得出OB2=A2B2=4,即可得出A3,An的坐标.
解: 过点A1作A1D⊥x轴于点D,
∵含60°角的菱形A1B1C1B2,A2B2C2B3,A3B3C3B4,…,
∴∠A1B1D=60°,A1B1=A1B2,
∴△A1B1B2是等边三角形,
∵B1(2,0),B2(4,0),
∴A1B1=B1B2=2,
∴B1D=1,A1D=,∴OD=3,
则A1(3,),
∴tan∠A1OD=,
∴∠A1OD=30°,
∴OB2=A2B2=4,
同理可得出:A2(6,2),则A3(12,4),
则点An的坐标是:( ,n).
故答案为(3,),(12,4),( ,n).
练习册系列答案
相关题目