题目内容
在长方形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的处,折痕为PQ,当点在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点在BC边上可移动的最大距离为 .
2
解:如图1,
当点D与点Q重合时,根据翻折对称性可得A′D=AD=5,
在Rt△A′CD中,A′D2=A′C2+CD2,
即52=(5-A′B)2+32,
解得A′B=1,
如图2,
当点P与点B重合时,根据翻折对称性可得A′B=AB=3,
∵3-1=2,
∴点A′在BC边上可移动的最大距离为2.
当点D与点Q重合时,根据翻折对称性可得A′D=AD=5,
在Rt△A′CD中,A′D2=A′C2+CD2,
即52=(5-A′B)2+32,
解得A′B=1,
如图2,
当点P与点B重合时,根据翻折对称性可得A′B=AB=3,
∵3-1=2,
∴点A′在BC边上可移动的最大距离为2.
练习册系列答案
相关题目