题目内容

【题目】如图,在等边△ABC中,点D,E分别在边BC,AC上,且BD=CE,AD,BE相交于点F.
(1)求证:AD=BE;
(2)求∠AFE的度数.

【答案】
(1)证明:∵△ABC是等边三角形

∴AB=BC,∠ABC=∠BCA=60°,

在△ABD和△BCE中,

∴△ABD≌△BCE,

∴AD=BE.


(2)解:∵△ABD≌△BCE

∴∠BAD=∠CBE,

∵∠AFE=∠BAD+∠ABE,

∴∠AFE=∠CBE+∠ABE=∠ABC=60°.


【解析】(1)只要证明△ABD≌△BCE,即可推出AD=BE;(2)由△ABD≌△BCE推出∠BAD=∠CBE,由∠AFE=∠BAD+∠ABE,推出∠AFE=∠CBE+∠ABE=∠ABC=60°;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网