题目内容
【题目】如图,ABCD的对角线相交于点O,将线段OD绕点O旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于H,连接DE.
(1)求证:DE⊥BC;
(2)若OE⊥CD,求证:2CEOE=CDDE;
(3)若OE⊥CD,BC=3,CE=1,求线段AC的长.
【答案】
(1)
证明:由旋转可知OE=OD,
∴∠ODE=∠OED,
∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC
∴OB=OE,
∴∠OEB=∠OBE,
∵∠BDE+∠DBE+∠BED=180°,
∴∠ODE+∠OED+∠OEB+∠OBE=180°
∴∠OED+∠OEB=90°,
即∠DEB=90°,
∴DE⊥BC;
(2)
解:∵OE⊥CD,
∴∠CHE=90°,
∴∠CDE+∠OED=90°
∵∠OED+∠OEB=90°,
∴∠CDE=∠OEB
∵∠OEB=∠OBE,
∴∠CDE=∠OBE,
∵∠CDE=∠OBE,∠CED=∠DEB,
∴△CDE∽△DBE
∴ = ,即CEBD=CDDE,
∵OE=OD,OB=OD,BD=OB+OD,
∴BD=2OE,
∴2CEOE=CDDE;
(3)
解:∵BC=3,CE=1,
∴BE=4
由(2)知,△CDE∽△DBE
∴ = ,即DE2=CEBE=4,
∴DE=2,
过点O作OF⊥BE,垂足为F,
∵OB=OE,
∴BF=EF= BE=2,
∴CF=EF﹣CE=1
∵OB=OD,BE=EF,
∴OF= DE=1,
在Rt△OCF中,OC= = = ,
∴AC=2OC=2 .
【解析】(1)由旋转的性质得到OE=OD,根据等腰三角形的性质得到∠ODE=∠OED,根据平行四边形的性质得到OB=OD,OA=OC等量代换得到OB=OE,推出∠DEB=90°,根据垂直的定义得到结论;(2)由垂直的定义得到∠CHE=90°,根据余角的性质得到∠CDE=∠OEB等量代换得到∠CDE=∠OBE,根据相似三角形的性质得到CEBD=CDDE,等量代换即可得到结论;(3)根据相似三角形的性质得到DE2=CEBE=4,求得DE=2,过点O作OF⊥BE,垂足为F,根据等腰三角形的想知道的BF=EF= BE=2,根据勾股定理即可得到结论.
【考点精析】掌握勾股定理的概念和平行四边形的性质是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.