题目内容
【题目】如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.
(1)问题发现
①当α=0°时,=_______;
②当α=180°时,=______.
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.
【答案】(1)①;②;(2)的大小没有变化,证明见解析;(3)BD的长为或.
【解析】
(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.
②α=180°时,可得AB∥DE,然后根据=,求出的值是多少即可.
(2)首先判断出∠ECA=∠DCB,再根据==,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.
(3)分两种情形:①如图3﹣1中,当点E在AB的延长线上时,②如图3﹣2中,当点E在线段AB上时,分别求解即可.
解:(1)①当α=0°时,
∵Rt△ABC中,∠B=90°,
∴AC===2,
∵点D、E分别是边BC、AC的中点,
∴AE=AC=,BD=BC=1,
∴=.
②如图1中,
当α=180°时,
可得AB∥DE,
∵=,
∴==.
故答案为:①,②.
(2)如图2,
当0°≤α<360°时,的大小没有变化,
∵∠ECD=∠ACB,
∴∠ECA=∠DCB,
又∵==,
∴△ECA∽△DCB,
∴==..
(3)①如图3﹣1中,当点E在AB的延长线上时,
在Rt△BCE中,CE=,BC=2,
∴BE===1,
∴AE=AB+BE=5,
∵=,
∴BD==.
②如图3﹣2中,当点E在线段AB上时,
BE===1,AE=AB-BE =4﹣1=3,
∵=,
∴BD=,
综上所述,满足条件的BD的长为或.