题目内容

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

【答案】(1) 3;60(2)60°,23)72°

【解析】:(1) 3;60

(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°

θ=∠CAC′=∠BAC′∠BAC=90°30°=60°.

在 Rt△AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B=30°。

∴AB′=2 AB,即

(3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′。

又∵∠BAC=36°,∴θ=∠CAC′=∠ACB=72°。

∴∠C′AB′=∠BAC=36°。

而∠B=∠B,∴△ABC∽△B′BA。∴AB:BB′=CB:AB。

∴AB2=CBBB′=CB(BC+CB′)。

而 CB′=AC=AB=B′C′,BC=1,∴AB2=1(1+AB),解得,

∵AB>0,∴

(1)根据题意得:△ABC∽△AB′C′,

∴S△AB′C′:S△ABC=,∠B=∠B′。

∵∠ANB=∠B′NM,∴∠BMB′=∠BAB′=60°。

(2)由四边形 ABB′C′是矩形,可得∠BAC′=90°,然后由θ=∠CAC′=∠BAC′-∠BAC,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n的值。

(3)由四边形ABB′C′是平行四边形,易求得θ=∠CAC′=∠ACB=72°,又由△ABC∽△B′BA,根据相似三角形的对应边成比例,易得AB2=CBBB′=CB(BC+CB′),继而求得答案

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网