题目内容
【题目】已知抛物线y=ax2+bx+c过点A(0,2).
(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;
(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.
①求抛物线的解析式;
②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.
【答案】(1)2a﹣b+2=0(a≠0);(2)①y=﹣x2+2;②详见解析.
【解析】
(1)由抛物线经过点A可求出c=2,再把(﹣,0)代入抛物线的解析式,即可得2a﹣b+2=0(a≠0);
(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,即可求得抛物线的解析式;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.
(1)∵抛物线y=ax2+bx+c过点A(0,2),
∴c=2.
又∵点(﹣,0)也在该抛物线上,
∴a(﹣)2+b(﹣)+c=0,
∴2a﹣b+2=0(a≠0).
(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,
∴x1﹣x2<0,y1﹣y2<0,
∴当x<0时,y随x的增大而增大;
同理:当x>0时,y随x的增大而减小,
∴抛物线的对称轴为y轴,开口向下,
∴b=0.
∵OA为半径的圆与拋物线的另两个交点为B、C,
∴△ABC为等腰三角形,
又∵△ABC有一个内角为60°,
∴△ABC为等边三角形.
设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,
又∵OB=OC=OA=2,
∴CD=OCcos30°=,OD=OCsin30°=1.
不妨设点C在y轴右侧,则点C的坐标为(,﹣1).
∵点C在抛物线上,且c=2,b=0,
∴3a+2=﹣1,
∴a=﹣1,
∴抛物线的解析式为y=﹣x2+2.
②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).
直线OM的解析式为y=k1x(k1≠0).
∵O、M、N三点共线,
∴x1≠0,x2≠0,且=,
∴﹣x1+=﹣x2+,
∴x1﹣x2=﹣,
∴x1x2=﹣2,即x2=﹣,
∴点N的坐标为(﹣,﹣+2).
设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).
∵点P是点O关于点A的对称点,
∴OP=2OA=4,
∴点P的坐标为(0,4).
设直线PM的解析式为y=k2x+4,
∵点M的坐标为(x,﹣+2),
∴﹣+2=k2x1+4,
∴k2=﹣,
∴直线PM的解析式为y=﹣+4.
∵﹣+4==﹣+2,
∴点N′在直线PM上,
∴PA平分∠MPN.