题目内容

【题目】如图,ABC内接于⊙OAD是⊙O直径,ECB延长线上一点,且∠BAE=C

(1)求证:直线AE是⊙O的切线;

(2)若∠BAE=30°,O的半径为2,求阴影部分的面积;

(3)若EB=AB,cosE=AE=24,求EB的长及⊙O的半径.

【答案】(1)见解析;(2) π﹣(3)BE=20,半径:.

【解析】

1)连接BD,利用圆周角定理得到∠ABD=90°,则∠D+∠DAB=90°,再利用等量代换证明∠DAE=90°,然后根据切线的判定定理即可得到结论;

2)连接OB,先计算出∠OAB=60°,得到△AOB为等边三角形,所以∠AOB=60°,然后利用阴影部份的面积=S扇形AOBSAOB进行计算;

3)作BHAEH,利用等腰三角形的性质得AH=EH=AE=12,∠E=∠BAE.在RtBEH中利用余弦的定义可计算出BE=20,则AB=20,由于∠D=∠C=∠BAE=∠E,则cos∠D=.在RtABD中,cos∠D==,设BD=3xAD=5x,易得4x=20,解出x得到AD的长,从而得到⊙O的半径.

1)连接BD,如图,∵AD为直径,∴∠ABD=90°,∴∠D+∠DAB=90°.

∵∠C=∠D,∠BAE=∠C,∴∠BAE+∠DAB=90°,即∠DAE=90°,∴ADAE,∴直线AE是⊙O的切线;

2)连接OB,如图,∵∠BAE=30°,∴∠OAB=60°,而OA=OB,∴△AOB为等边三角形,∴∠AOB=60°,∴阴影部份的面积=S扇形AOBSAOB=×22=π﹣

3)作BHAEH,如图,∵EB=AB,∴AH=EH=AE=12,∠E=∠BAE.在RtBEH中,∵cos∠E==,∴BE=12×=20,∴AB=BE=20

∵∠D=∠C=∠BAE=∠E,∴cos∠D=.在RtABD中,cos∠D==,设BD=3xAD=5x,∴AB=4x,即4x=20,解得:x=5,∴AD=25,∴⊙O的半径为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网