题目内容

【题目】是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字2345.图是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子在桌面掷出后,看骰子落在桌面上(即底面)的数字是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法继续……

1)随机掷一次骰子,则棋子跳动到点C处的概率是   

2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.

【答案】(1);(2

【解析】

1)当底面数字为2时,可以到达点C,据此进一步求解即可;

2)掷两次骰子的数字和一定大于2小于10,则只需要跳一周后到达点C即可,此时需要8步,据此进一步列表得出所有可能性,然后再次加以计算即可.

1)随机掷一次骰子,则棋子跳动到点C处需要两步,即棋子跳到点C的概率相当于数字2出现的概率,而数字2出现的概率是

故答案为

2)列表如图:

共有16种可能,和为8可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网