题目内容
【题目】如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4).
(1)点B坐标为
(2)如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰Rt△ACD,∠ACD=90,连OD,求∠AOD的度数;
(3)如图3,过点A作y轴的垂线交y轴于点E,F为x轴负半轴上一点,点G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过点A作x轴垂线交EH于点M,连FM,等式=1是否成立?若成立,请证明;若不成立,说明理由.
【答案】(1)(8,0);(2)90°;(3)=1成立,理由详见解析.
【解析】
(1)因为△AOB为等腰直角三角形,A(4,4),作AE⊥OB于E,则B点坐标可求;(2)作AE⊥OB于E,DF⊥OB于F,求证△DFC≌△CEA,再根据等量变换,证明△AOB为等腰直角三角形,则∠AOD的度数可求;(3)等式成立.在AM上截取AN=OF,连EN,易证△EAN≌△EOF,再根据角与角之间的关系,证明△NEM≌△FEM,则有AM-MF=OF,即可求证等式成立.
(1)作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB为等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);
故答案为:(8,0);
(2)作AE⊥OB于E,DF⊥OB于F,
∵△ACD为等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
∴△DFC≌△CEA,
∴EC=DF,FC=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,
即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°
∵△AOB为等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;
(3)成立,理由如下:
在AM上截取AN=OF,连EN.
∵A(4,4),
∴AE=OE=4,
又∵∠EAN=∠EOF=90°,AN=OF,
∴△EAN≌△EOF(SAS)
∴∠OEF=∠AEN,EF=EN,
又∵△EGH为等腰直角三角形,
∴∠GEH=45°,
即∠OEF+∠OEM=45°,
∴∠AEN+∠OEM=45°
又∵∠AEO=90°,
∴∠NEM=45°=∠FEM,
又∵EM=EM,
∴△NEM≌△FEM(SAS),
∴MN=MF,
∴AM-MF=AM-MN=AN,
∴AM-MF=OF,
即=1.