题目内容
【题目】如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为 .
【答案】12°
【解析】解:如图设圆心为O,连接OA、OB,点E落在圆上的点E′处. ∵AB=OA=OB,
∴∠OAB=60°,同理∠OAE′=60°,
∵∠EAB=108°,
∴∠EAO=∠EAB﹣∠OAB=48°,
∴∠EAE′=∠OAE′﹣∠EAO=60°﹣48°=12°,
∵点E旋转的角度和点C旋转的角度相等,
∴点C旋转的角度为12°,
所以答案是12°.
【考点精析】掌握正多边形和圆是解答本题的根本,需要知道圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等.
练习册系列答案
相关题目
【题目】某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)
裁法一 | 裁法二 | 裁法三 | |
A型板材块数 | 1 | 2 | 0 |
B型板材块数 | 2 | M | N |
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m= ,n= ;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?