题目内容

如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.

(1)求证:DE平分∠BDC;
(2)若点 M在DE上,且DC=DM,求证:ME=BD.
见解析

证明:(1)在Rt△ABC中,
∵AC=BC
∴∠BAC=∠ABC=45°,
又∵∠CAD=∠CBD=15°
∴∠BAD=∠ABD=30°,
∴AD=BD,∠ADB=120°
∴△ADC≌△BDC(SAS),∠BDE=60°
∴∠ADC=∠BDC=120°
∴∠MDC=60°,∴∠BDE=∠CDE,
∴DE平分∠BDC.
(2)连CM由(1)知∠MDC=60°

又∵DC=DM,∴△DCM是等边三角形
∴∠CME=120°,又∵AC=CE,
∴∠CAE=∠CEA=15°.∴∠CEA=∠CBD=15°
由(1)知∠BDC=120°,∴∠BDC=∠EMC
∴△BDC≌△EMC,∴ME=BD.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网