题目内容
【题目】如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为( )
A. B. C. D.
【答案】B
【解析】
过点D作DE⊥AC于点E,由勾股定理可求AC=10,由“AAS”可证△ADO≌△ADE,可证AE=AO=8,OD=DE,可得CE=2,由勾股定理可求OD的长,即可求点D坐标.
解:如图,过点D作DE⊥AC于点E,
∵四边形OABC为矩形,点B的坐标为(8,6),
∴OA=8,OC=6
∴AC==10
由题意可得AD平分∠OAC
∴∠DAE=∠DAO,AD=AD,∠AOD=∠AED=90°
∴△ADO≌△ADE(AAS)
∴AE=AO=8,OD=DE
∴CE=2,
∵CD2=DE2+CE2,
∴(6-OD)2=4+OD2,
∴OD=
∴点D(0,)
故选:B.
练习册系列答案
相关题目