题目内容
已知二次函数y=
x2+3x-
.
(1)求函数图象的顶点及对称轴;
(2)自变量x在什么范围内时y随x增大而增大?
(3)何时函数y有最大值或最小值?最大(小)值是多少?何时y随x增大而减小?
1 |
2 |
5 |
2 |
(1)求函数图象的顶点及对称轴;
(2)自变量x在什么范围内时y随x增大而增大?
(3)何时函数y有最大值或最小值?最大(小)值是多少?何时y随x增大而减小?
分析:(1)根据二次函数的顶点坐标(-
,
)和对称轴直线x=-
,解答出即可;
(2)当a>0时,抛物线在对称轴右侧,y随x的增大而增大;
(3)因为图象有最低点,所以函数有最小值,当x=-
时,y=
;当a>0时,抛物线在对称轴左侧,y随x的增大而减少;
b |
2a |
4ac-b2 |
4a |
b |
2a |
(2)当a>0时,抛物线在对称轴右侧,y随x的增大而增大;
(3)因为图象有最低点,所以函数有最小值,当x=-
b |
2a |
4ac-b2 |
4a |
解答:解:(1)由二次函数y=
x2+3x-
得,
x=-
=-
=-3,
y=
=
=-7,
∴函数图象的顶点为(-3,-7),对称轴为x=-3;
(2)∵
>0,
∴二次函数的开口向上,
∴当x>-3时,y随x增大而增大;
(3)∵
>0,
∴二次函数的开口向上,
当x=-3时,二次函数有最小值y=-7,
∴当x<-3时,y随x增大而减小.
1 |
2 |
5 |
2 |
x=-
b |
2a |
3 | ||
2×
|
y=
4ac-b2 |
4a |
4×
| ||||
4×
|
∴函数图象的顶点为(-3,-7),对称轴为x=-3;
(2)∵
1 |
2 |
∴二次函数的开口向上,
∴当x>-3时,y随x增大而增大;
(3)∵
1 |
2 |
∴二次函数的开口向上,
当x=-3时,二次函数有最小值y=-7,
∴当x<-3时,y随x增大而减小.
点评:本题主要考查了二次函数的图象与性质,应熟记二次函数的顶点坐标公式及对称轴公式,体现了数形结合思想.
练习册系列答案
相关题目
已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
y=x2+px+q | p | q | △ | x1 | x2 | d | ||||||||
y=x2-5x+6 | -5 | 6 | 1 | 2 | 3 | 1 | ||||||||
y=x2-
|
-
|
|
|
|||||||||||
y=x2+x-2 | -2 | -2 | 3 |