题目内容
【题目】如图,已知四边形ABCD中,点E是CD上的点(不与CD的中点重合), DE=AB, ∠BAC=∠D,AD=AC
(1)求证:四边形AECB是等腰梯形;
(2)点F 是AB 边延长线上一点,且BC=CF .联结CF、EF,若AC⊥EF求证:四边形AECF是菱形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)由AD=AC,证得∠D=∠ACD,由∠BAC=∠D,推出∠ACD=∠BAC,由平行线的判定推出AB∥DC,根据全等三角形的判定证得△ADE≌△CAB,即可证得AE=BC,由等腰梯形的判定即可证得结论;
(2)首先证明△AEC≌△CFA,通过全等三角形的性质得到AF=CE,推出四边形AECF是平行四边形,然后由菱形的判定定理即可得到结论.
证明:(1)∵AD=AC,
∴∠D=∠ACD,
∵∠BAC=∠D,
∴∠ACD=BAC,
∴AB∥DC,
在△ADE和△CAB中, ,
∴△ADE≌△CAB(SAS),
∴AE=BC,
∴四边形AECB是等腰梯形;
(2)由(1)得AE=BC,∠AEC=∠BCE,AB∥EC,
∴∠FBC=∠BCE,∠FAC=∠ACE
∵BC=CF,
∴AE=CF,∠FBC=∠BFC,
∴∠BFC=∠AEC,
在△AEC和△CFA中,,
∴△AEC≌△CFA (AAS),
∴AF=CE,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴平行四边形AECF是菱形.
【题目】小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑,两人的运动手环记录时间和步数如下:
出发 | 途中 | 结束 | |
时间 | |||
小莉的步数 | 1308 | 3183 | 8808 |
出发 | 途中 | 结束 | |
时间 | |||
爸爸的步数 | 2168 | 4168 |
(1)表格中表示的结束时间为 , ;
(2)小莉和她爸爸两人每步分别跑多少米?
(3)渡江胜利纪念馆到绿博园的路程是多少米?