题目内容
【题目】如图,直线y=﹣x+5与x轴交于点B,与y轴交于点D,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,D两点,点C是抛物线的顶点.
(1)求抛物线的解析式;
(2)点M是直线BD上方抛物线上的一个动点,其横坐标为m,过点M作x轴的垂线,交直线BD于点P,当线段PM的长度最大时,求m的值及PM的最大值;
(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为3,若存在求出点Q的坐标;若不存在请说明理由.
【答案】(1)抛物线的表达式为:y=﹣x2+4x+5;(2)当m=时,PM有最大值
;(3)存在满足条件的点Q,其坐标为Q1(2,9),Q2(3,8),Q3(﹣1,0),Q4(6,﹣7).
【解析】
(1)y=-x+5,令x=0,则y=5,令y=0,则x=5,故点B、D的坐标分别为(5,0)、(0,5),利用待定系数法即可求解;
(2)由题意可得M点坐标为(m,﹣m2+4m+5),则则P点坐标为(m,﹣m+5),表示出PM的长度:PM=-m2+4m+5-(-m+5)=-m2+5m=-(m-)2+
,利用二次函数的性质即可求解;
(3)过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设出Q点坐标Q(x,﹣x2+4x+5),则G(x,﹣x+5),表示出QG的长度QG=|-x2+4x+5-(-x+5)|=|-x2+5x|,由条件可得△BOD是等腰直角三角形,,可证得△QHG为等腰直角三角形,则当△BDQ中BD边上的高为3时,即QH=HG=3
,QG=
×3
=6,|-x2+5x|=6,即可求解.
解:(1)y=﹣x+5,令x=0,则y=5,令y=0,则x=5,
故点B、D的坐标分别为(5,0)、(0,5),
则二次函数表达式为:y=﹣x2+bx+5,将点B坐标代入上式并解得:b=4,
故抛物线的表达式为:y=﹣x2+4x+5;
(2)设M点横坐标为m(m>0),则P(m,﹣m+5),M(m,﹣m2+4m+5),
∴PM=﹣m2+4m+5﹣(﹣m+5)=﹣m2+5m=﹣(m-)2+
,
∴当m=时,PM有最大值
;
(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,
设Q(x,﹣x2+4x+5),则G(x,﹣x+5),
∴QG=|﹣x2+4x+5﹣(﹣x+5)|=|﹣x2+5x|,
∵△BOD是等腰直角三角形,
∴∠DBO=45°,
∴∠HGQ=∠BGE=45°,
∴△QHG是等腰直角三角形,
当△BDQ中BD边上的高为3时,即QH=HG=3
,
∴QG=×3
=6,
∴|﹣x2+5x|=6,
当﹣x2+5x=6时,解得x=2或x=3,
∴Q(2,9)或(3,8),
当﹣x2+5x=﹣6时,解得x=﹣1或x=6,
∴Q(﹣1,0)或(6,﹣7),
综上可知存在满足条件的点Q,其坐标为Q1(2,9),Q2(3,8),Q3(﹣1,0),Q4(6,﹣7).
![](http://thumb.zyjl.cn/images/loading.gif)