题目内容
【题目】将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.
【答案】解:(1.)抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是y=x2﹣4x+4﹣9,即y=x2﹣4x﹣5. y=x2﹣4x﹣5=(x﹣2)2﹣9,
则D的坐标是(2,﹣9).
在y=x2﹣4x﹣5中令x=0,则y=﹣5,
则C的坐标是(0,﹣5),
令y=0,则x2﹣4x﹣5=0,
解得x=﹣1或5,
则B的坐标是(5,0);
(2.)过D作DA⊥y轴于点A.
则S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC= (2+5)×9﹣ ×2×4﹣ ×5×5=15.
【解析】(1)首先求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式,利用配方法求得D的坐标,令y=0求得C的横坐标,令y=0,解方程求得B的横坐标;(2)过D作DA⊥y轴于点A,然后根据S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC求解.
【考点精析】利用二次函数图象的平移和抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
练习册系列答案
相关题目