题目内容

【题目】如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.

(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)
(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;

(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

【答案】
(1)解:结论:FG=CE,FG∥CE.

理由:如图1中,设DE与CF交于点M.

∵四边形ABCD是正方形,

∴BC=CD,∠ABC=∠DCE=90°,

在△CBF和△DCE中,

∴△CBF≌△DCE,

∴∠BCF=∠CDE,CF=DE,

∵∠BCF+∠DCM=90°,

∴∠CDE+∠DCM=90°,

∴∠CMD=90°,

∴CF⊥DE,

∵GE⊥DE,

∴EG∥CF,

∵EG=DE,CF=DE,

∴EG=CF,

∴四边形EGFC是平行四边形.

∴GF=EC,

∴GF=EC,GF∥EC.


(2)解:结论仍然成立.

理由:如图2中,设DE与CF交于点M.

∵四边形ABCD是正方形,

∴BC=CD,∠ABC=∠DCE=90°,

在△CBF和△DCE中,

∴△CBF≌△DCE,

∴∠BCF=∠CDE,CF=DE,

∵∠BCF+∠DCM=90°,

∴∠CDE+∠DCM=90°,

∴∠CMD=90°,

∴CF⊥DE,

∵GE⊥DE,

∴EG∥CF,

∵EG=DE,CF=DE,

∴EG=CF,

∴四边形EGFC是平行四边形.

∴GF=EC,

∴GF=EC,GF∥EC.


(3)解:结论仍然成立.

理由:如图3中,设DE与FC的延长线交于点M.

∵四边形ABCD是正方形,

∴BC=CD,∠ABC=∠DCE=90°,

∴∠CBF=∠DCE=90°

在△CBF和△DCE中,

∴△CBF≌△DCE,

∴∠BCF=∠CDE,CF=DE

∵∠BCF+∠DCM=90°,

∴∠CDE+∠DCM=90°,

∴∠CMD=90°,

∴CF⊥DE,

∵GE⊥DE,

∴EG∥CF,

∵EG=DE,CF=DE,

∴EG=CF,

∴四边形EGFC是平行四边形.

∴GF=EC,

∴GF=EC,GF∥EC.


【解析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网