题目内容
【题目】 已知,在中,是边上的一个动点,将沿所在直线折叠,使点落在点处.
(1)如图1,若点是中点,连接 . ①写出的长;②求证:四边形是平行四边形.
(2)如图2,若,过点作交的延长线于点,求的长.
【答案】(1)①BD=,BP= 2.②证明见解析;(2).
【解析】
试题分析:(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;
②想办法证明DP∥BC,DP=BC即可;
(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN=,由△BDN∽△BAM,可得,由此求出AM,由△ADM∽△APE,可得,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.
试题解析:(1)①在Rt△ABC中,∵BC=2,AC=4,
∴AB=,
∵AD=CD=2,
∴BD=,
由翻折可知,BP=BA=2.
②如图1中,
∵△BCD是等腰直角三角形,
∴∠BDC=45°,
∴∠ADB=∠BDP=135°,
∴∠PDC=135°﹣45°=90°,
∴∠BCD=∠PDC=90°,
∴DP∥BC,∵PD=AD=BC=2,
∴四边形BCPD是平行四边形.
(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.
设BD=AD=x,则CD=4﹣x,
在Rt△BDC中,∵BD2=CD2+BC2,
∴x2=(4﹣x)2+22,
∴x=,
∵DB=DA,DN⊥AB,
∴BN=AN=,
在Rt△BDN中,DN=,
由△BDN∽△BAM,可得,
∴
∴AM=2,
∴AP=2AM=4,
由△ADM∽△APE,可得,
∴,
∴AE=,
∴EC=AC﹣AE=4﹣=,
易证四边形PECH是矩形,
∴PH=EC=.
练习册系列答案
相关题目