题目内容

【题目】探究问题:

方法感悟:

如图,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.

感悟解题方法,并完成下列填空:

△ADE绕点A顺时针旋转90°得到△ABG,此时ABAD重合,由旋转可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=45°

∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,

∴∠1+∠3=45°.

∠GAF=∠_________.

AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

方法迁移:

如图,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

问题拓展:

如图,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由)

【答案】⑴EAF、△EAF、GF;DE+BF=EF;⑶∠B∠D互补时,可使得DE+BF=EF.

【解析】

(1)根据正方形性质填空;(2)假设∠BAD的度数为,将ADE绕点A顺时针旋转得到ABG,此时ABAD重合,由旋转可得:AB=AD,BG=DE, 1=2,ABG=D=90°,结合正方形性质可得DE+BF=EF. ⑶根据题意可得,当∠B与∠D互补时,可使得DE+BF=EF.

EAF、EAF、GF.

DE+BF=EF,理由如下:

假设∠BAD的度数为,将ADE绕点A顺时针旋转得到ABG,此时ABAD重合,由旋转可得:

AB=AD,BG=DE, 1=2,ABG=D=90°,

∴∠ABG+ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=

∴∠2+3=BAD-EAF=

∵∠1=2,

∴∠1+3=

即∠GAF=EAF

AG=AE,AF=AF

∴△GAF≌△EAF.

GF=EF,

又∵GF=BG+BF=DE+BF

DE+BF=EF.

⑶当∠B与∠D互补时,可使得DE+BF=EF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网