题目内容
【题目】如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0; ②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是( )
A.①③B.①③④C.①②③D.①②③④
【答案】C
【解析】
①根据抛物线的开口方向、对称轴、与y轴的交点即可得结论;
②根据抛物线与x轴的交点坐标即可得结论;
③根据对称轴和与x轴的交点得另一个交点坐标,把另一个交点坐标代入抛物线解析式即可得结论;
④根据点(,0)和对称轴方程即可得结论.
解:①观察图象可知:
a<0,b<0,c>0,∴abc>0,
所以①正确;
②当x=时,y=0,
即a+b+c=0,
∴a+2b+4c=0,
∴a+4c=﹣2b,
∴a﹣2b+4c=﹣4b>0,
所以②正确;
③因为对称轴x=﹣1,抛物线与x轴的交点(,0),
所以与x轴的另一个交点为(﹣,0),
当x=﹣时,a﹣b+c=0,
∴25a﹣10b+4c=0.
所以③正确;
④当x=时,a+2b+4c=0,
又对称轴:﹣=﹣1,
∴b=2a,a=b,
b+2b+4c=0,
∴b=﹣c.
∴3b+2c=﹣c+2c=﹣c<0,
∴3b+2c<0.
所以④错误.
故选:C.
练习册系列答案
相关题目