题目内容

如图1,在平面直角坐标系中,⊙O1与x轴切于A(-3,0)与y轴交于B、C两点,BC=8,连接AB。

(1)求证:∠ABO1=∠ABO;
(2)求AB的长;
(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM-BN的值不变;②BM+BN的值不变。其中有且只有一个结论正确,请判断①、②中哪个结论正确,并说明理由。
(1)证明见解析;(2)2;(3)①,理由见解析.

试题分析:(1)连接O1A,由圆O1与x轴切于A,根据切线的性质得到O1A垂直于OA,由OB与AO垂直,根据平面内垂直于同一条直线的两直线平行,得到O1A与OB平行,根据两直线平行内错角相等,得到一对内错角相等,再由O1A=O1B,根据等边对等角可得出一对角相等,等量代换可得出∠ABO1=∠ABO,得证;
(2)作O1E⊥BC于点E,根据垂径定理得到E为BC的中点,由点O1的坐标为(?,-2),可求得OE=O1B=O1A=2,O1E=OA=,然后由勾股定理求得BE的长,继而求得OB与OC以及AB的长,;
(3)两个结论中,①BM-BN的值不变正确,理由为:在MB上取一点G,使MG=BN,连接AM、AN、AG、MN,由∠ABO1为四边形ABMN的外角,根据圆内接四边形的外角等于它的内对角,可得出∠ABO1=∠NMA,再由∠ABO1=∠ABO,等量代换可得出∠ABO=∠NMA,然后利用同弧所对的圆周角相等可得出∠ABO=∠ANM,等量代换可得出∠NMA=∠ANM,根据等角对等边可得出AM=AN,再由同弧所对的圆周角相等,及OM=BN,利用SAS可得出三角形AMG与三角形ABN全等,根据全等三角形的对应边相等可得出AG=AB,由AO与BG垂直,根据三线合一得到O为BG的中点,根据OB的长求出BG的长,然后BM-BN=BM-MG=BG,由BG为常数得到BM-BN的长不变,得证.
试题解析:(1)连接O1A,则O1A⊥OA,

又∵OB⊥OA,
∴O1A∥OB,
∴∠O1AB=∠ABO,
又∵O1A=O1B,
∴∠O1AB=∠O1BA,
∴∠ABO1=∠ABO;
(2)过点作O1E⊥BC于点E,
∴BE=CE,
∵点O1的坐标为(?,-2),
∴OE=O1B=O1A=2,O1E=OA=
∴在Rt△BO1E中,BE=
∴OB=OE-BE=2-1=1,OC=OE+CE=2+1=3,

(3)①正确.理由为:在MB上取一点G,使MG=BN,连接AM、AN、AG、MN,
∵∠ABO1为四边形ABMN的外角,
∴∠ABO1=∠NMA,
又∵∠ABO1=∠ABO,
∴∠ABO=∠NMA,
又∵∠ABO=∠ANM,
∴∠AMN=∠ANM,
∴AM=AN,
∵∠AMG和∠ANB都为所对的圆周角,
∴∠AMG=∠ANB,
∵在△AMG和△ANB中,

∴△AMG≌△ANB(SAS),
∴AG=AB,
∵AO⊥BG,
∴BG=2BO=2,
∴BM-BN=BM-MG=BG=2其值不变.
考点: 圆的综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网