题目内容

【题目】如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为

【答案】y=2x2﹣4x+4
【解析】解:如图所示:
∵四边形ABCD是边长为1的正方形,
∴∠A=∠B=90°,AB=2.
∴∠1+∠2=90°,
∵四边形EFGH为正方形,
∴∠HEF=90°,EH=EF.
∴∠1+∠3=90°,
∴∠2=∠3,
在△AHE与△BEF中,

∴△AHE≌△BEF(AAS),
∴AE=BF=x,AH=BE=2﹣x,
在Rt△AHE中,由勾股定理得:
EH2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4;
即y=2x2﹣4x+4(0<x<2),
所以答案是:y=2x2﹣4x+4.
【考点精析】掌握正方形的性质是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网