题目内容
【题目】综合与实践
(1)(探索发现)在中. ,,点为直线上一动点(点不与点,重合),过点作交直线于点,将绕点顺时针旋转得到,连接.
如图(1),当点在线段上,且时,试猜想:
①与之间的数量关系:______;
②______.
(2)(拓展探究)
如图(2),当点在线段上,且时,判断与之间的数量关系及的度数,请说明理由.
(3)(解决问题)
如图(3),在中,,,,点在射线上,将绕点顺时针旋转得到,连接.当时,直接写出的长.
【答案】(1)①;②;(2),.理由见解析;(3)的长为1或2.
【解析】
(1)由“SAS”△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;
(2)结论:AF=BF,∠ABE=a.由“SAS”△ADF≌△EDB,即可解决问题;
(3)分当点D在线段BC上和当点D在BC的延长线上两种情形讨论,利用平行线分线段成比例可求解.
解:
(1)如图1中,设AB交DE于O.
∵∠ACB=90°,AC=BC,
∴∠ABC=45°,
∵DF∥AC,
∴∠FDB=∠C=90°,
∴∠DFB=∠DBF=45°,
∴DF=DB,
∵∠ADE=∠FDB=90°,
∴∠ADF=∠EDB,且DA=DE,DF=DB
∴△ADF≌△EDB(SAS),
∴AF=BE,∠DAF=∠E,
∵∠AOD=∠EOB,
∴∠ABE=∠ADO=90°
故答案为AF=BE,90°.
(2),.
理由:∵,
∴,.
∵,
∴.∴.
∴
∵,,,
∴.
又∵,
∴.
∴,.
∴,,
∴.
(3)1或2.
解:当点在线段上时,过点作交直线于点,如图(1).
∵,∴.
∵,∴.
∵,∴,.
∵,,
∴.
∵,∴.∴.∴.
又,∴,.
当点在线段的延长线上时,过点作交的延长线于点,如图(2).
∵,
∴.
∴.
∴.
同理可得.
综上可得,的长为1或2.
【题目】“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄 | 清理养鱼网箱人数/人 | 清理捕鱼网箱人数/人 | 总支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?