题目内容
【题目】若抛物线y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m的取值范围是( )
A.m<2B.m>2C.mD.m
【答案】A
【解析】
试题根据二次函数y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则(2m﹣2m)2+3m﹣1<2m+1,求出k的取值范围即可.
解:∵抛物线y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,
∴当x=2m时,y<2m+1,所以把x=2m代入解析式中得:(2m﹣2m)2+3m﹣1<2m+1
∴m<2,
所以m的取值范围是m<2.
故选A.
练习册系列答案
相关题目