题目内容
【题目】如图,在四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连结BE,且BE也平分∠ABC,则以下的命题中正确的个数是( )
①BC+AD=AB ; ②E为CD中点
③∠AEB=90°; ④S△ABE=S四边形ABCD
A.1B.2C.3D.4
【答案】D
【解析】
在AB上截取AF=AD.证明△AED≌△AEF,△BEC≌△BEF.可证4个结论都正确.
解:在AB上截取AF=AD.
则△AED≌△AEF(SAS).
∴∠AFE=∠D.
∵AD∥BC,∴∠D+∠C=180°.
∴∠C=∠BFE.
∴△BEC≌△BEF(AAS).
∴①BC=BF,故AB=BC+AD;
②CE=EF=ED,即E是CD中点;
③∠AEB=∠AEF+∠BEF=∠DEF+∠CEF=×180°=90°;
④S△AEF=S△AED,S△BEF=S△BEC,
∴S△AEB=S四边形BCEF+S四边形EFAD=S四边形ABCD.
故选D.
练习册系列答案
相关题目
【题目】某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ | 0 | ﹣ | ﹣ | ﹣ | … |
(1)请补全函数图象;
(2)方程x3﹣2x=﹣2实数根的个数为 ;
(3)观察图象,写出该函数的两条性质.