题目内容

【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)

【答案】
(1)解:由题意,得:w=(x﹣20)y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)
(2)解:对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线

又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着X的增大而增大,

∴当x=32时,W=2160

答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元


(3)解:取W=2000得,﹣10x2+700x﹣10000=2000

解这个方程得:x1=30,x2=40.

∵a=﹣10<0,抛物线开口向下.

∴当30≤x≤40时,w≥2000.

∵20≤x≤32

∴当30≤x≤32时,w≥2000.

设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000

∵k=﹣200<0,

∴P随x的增大而减小.

∴当x=32时,P的值最小,P最小值=3600.

答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元


【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(3)根据抛物线的性质和图象,求出每月的成本.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网