题目内容
【题目】如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.
【答案】
(1)
解:当m=3时,y=﹣x2+6x
令y=0得﹣x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
当x=1时,y=5
∴B(1,5)
∵抛物线y=﹣x2+6x的对称轴为直线x=3
又∵B,C关于对称轴对称
∴BC=4
(2)
解:连接AC,过点C作CH⊥x轴于点H(如图1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴ ,
∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,
又∵B,C关于对称轴对称,
∴BC=2(m﹣1),
∵B(1,2m﹣1),P(1,m),
∴BP=m﹣1,
又∵A(2m,0),C(2m﹣1,2m﹣1),
∴H(2m﹣1,0),
∴AH=1,CH=2m﹣1,
∴ ,
∴m=
(3)
解:∵B,C不重合,∴m≠1,
(1.)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,
(i)若点E在x轴上(如图1),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
,
∴△BPC≌△MEP,
∴BC=PM,
∴2(m﹣1)=m,
∴m=2,此时点E的坐标是(2,0);
(ii)若点E在y轴上(如图2),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴m﹣1=1,
∴m=2,
此时点E的坐标是(0,4);
(2.)当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,
(i)若点E在x轴上(如图3),
易证△BPC≌△MEP,
∴BC=PM,
∴2(1﹣m)=m,
∴m= ,此时点E的坐标是( ,0);
(ii)若点E在y轴上(如图4),
过点P作PN⊥y轴于点N,
易证△BPC≌△NPE,
∴BP=NP=OM=1,
∴1﹣m=1,∴m=0(舍去),
综上所述,当m=2时,点E的坐标是(2,0)或(0,4),
当m= 时,点E的坐标是( ,0).
【解析】(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△ACH∽△PCB,根据相似的性质得到: ,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.