题目内容

如图,在平行四边形ABCD中,E是BD上一点,AE的延长线交DC于点F,交BC的延长线于点G.求证:
(1)△ABE∽△FDE;
(2)AE2=EF•EG.
分析:(1)先由平行四边形的定义得出AB∥CD,再根据平行线的性质得到∠ABE=∠FDE,∠EAB=∠EFD,然后根据两角对应相等的两三角形相似即可证明△ABE∽△FDE;
(2)先由△ABE∽△FDE,根据相似三角形对应边成比例得出
AE
EF
=
BE
ED
①,再证明△BEG∽△DEA,得出
BE
ED
=
EG
AE
②,比较①②,可得
AE
EF
=
EG
AE
,则AE2=EF•EG.
解答:证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABE=∠FDE,∠EAB=∠EFD,
∴△ABE∽△FDE;

(2)由(1)知△ABE∽△FDE,
AE
EF
=
BE
ED
①.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠GBE=∠ADE,∠G=∠DEA,
∴△BEG∽△DEA,
BE
ED
=
EG
AE
②,
由①②可得,
AE
EF
=
EG
AE

∴AE2=EF•EG.
点评:此题考查了相似三角形的判定和性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网