题目内容
【题目】如图,平面上存在点P、点M与线段AB.若线段AB上存在一点Q,使得点M在以PQ为直径的圆上,则称点M为点P与线段AB的共圆点.
已知点P(0,1),点A(﹣2,﹣1),点B(2,﹣1).
(1)在点O(0,0),C(﹣2,1),D(3,0)中,可以成为点P与线段AB的共圆点的是 ;
(2)点K为x轴上一点,若点K为点P与线段AB的共圆点,请求出点K横坐标xK的取值范围;
(3)已知点M(m,﹣1),若直线y=x+3上存在点P与线段AM的共圆点,请直接写出m的取值范围.
【答案】(1)C;(2)﹣1﹣≤xk≤1﹣或﹣1≤xk≤1+;(3)m≤3﹣2或m≥3+2.
【解析】
(1)由题意可知当Q与A重合时,点C在以AP为直径的圆上,所以可以成为点P与线段AB的共圆点的是C;
(2)根据题意由两点的距离公式可得AP=BP=2,分别画以AP和BP为直径的圆交x轴于4个点:K1、K2、K3、K4,结合图形2可得4个点的坐标,从而得结论;
(3)由题意先根据直线y=x+3,当x=0和y=0计算与x轴和y轴的交点坐标,分两种情况:M在A的左侧和右侧,先计算圆E与直线y=x+3相切时m的值,从而根据图形可得结论.
解:(1)如图1,可以成为点P与线段AB的共圆点的是C,
故答案为:C;
(2)∵P(0,1),点A(﹣2,﹣1),点B(2,﹣1).
∴AP=BP==2,
如图2,分别以PA、PB为直径作圆,交x轴于点K1、K2、K3、K4,
∵OP=OG=1,OE∥AB,
∴PE=AE=,
∴OE=AG=1,
∴K1(﹣1﹣,0),k2(1﹣,0),k3(﹣1,0),k4(1+,0),
∵点K为点P与线段AB的共圆点,
∴﹣1﹣≤xk≤1﹣或﹣1≤xk≤1+;
(3)分两种情况:
①如图3,当M在点A的左侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=x+3相切于点F,连接EF,则EF⊥FH,
当x=0时,y=3,当y=0时,y=x+3=0,x=﹣6,
∴ON=3,OH=6,
∵tan∠EHF===,
设EF=a,则FH=2a,EH=a,
∴OE=6﹣a,
Rt△OEP中,OP=1,EP=a,
由勾股定理得:EP2=OP2+OE2,
∴,
解得:a=(舍去)或,
∴QG=2OE=2(6﹣a)=﹣3+2,
∴m≤3﹣2;
②如图4,当M在点A的右侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=x+3相切于点F,连接EF,则EF⊥FH,
同理得QG=3+2,
∴m≥3+2,
综上,m的取值范围是m≤3﹣2或m≥3+2.
【题目】为了了解某校七年级学生每周上网的时间,甲、乙两名学生进行了抽样调查.甲同学调查了七年级电脑爱好者中40名学生每周上网的时间;乙同学从全校800名七年级学生中随机抽取了40名学生,调查了每周上网的时间.甲、乙同学各自整理的样本数据如表:
上网时间t(小时/周) | 甲学生抽样人数(人) | 乙学生抽样人数(人) |
0≤t<1.5 | 6 | 22 |
1.5≤t<2.5 | 10 | 10 |
2.5≤t<3.5 | 16 | 6 |
t≥3.5 | 8 | 2 |
(1)你认为哪名学生抽取的样本不合理,请说明理由.
(2)请你根据抽取样本合理的学生的数据,将调查结果绘制成合适的统计图(绘制一种即可).
(3)专家建议每周上网2.5小时以上(含2.5小时)的学生应适当减少上网的时间,估计该校全体七年级学生中应适当减少上网的时间的人数.