题目内容

等腰△ABC内接于半径为5的⊙O,点O到底边BC的距离为3,则AB的长为______.
分两种情况考虑:当△ABC为锐角三角形时,如图1所示,
过A作AD⊥BC,由题意得到AD过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO+OD=8,BD=4,
根据勾股定理得:AB=
82+42
=4
5

当△ABC为锐角三角形时,如图2所示,
过A作AD⊥BC,由题意得到AD延长线过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO-OD=2,BD=4,
根据勾股定理得:AB=
22+42
=2
5

综上,AB=2
5
或4
5

故答案为:2
5
或4
5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网