题目内容
等腰△ABC内接于半径为5的⊙O,点O到底边BC的距离为3,则AB的长为______.
分两种情况考虑:当△ABC为锐角三角形时,如图1所示,
过A作AD⊥BC,由题意得到AD过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO+OD=8,BD=4,
根据勾股定理得:AB=
=4
;
当△ABC为锐角三角形时,如图2所示,
过A作AD⊥BC,由题意得到AD延长线过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO-OD=2,BD=4,
根据勾股定理得:AB=
=2
,
综上,AB=2
或4
.
故答案为:2
或4
过A作AD⊥BC,由题意得到AD过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO+OD=8,BD=4,
根据勾股定理得:AB=
82+42 |
5 |
当△ABC为锐角三角形时,如图2所示,
过A作AD⊥BC,由题意得到AD延长线过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO-OD=2,BD=4,
根据勾股定理得:AB=
22+42 |
5 |
综上,AB=2
5 |
5 |
故答案为:2
5 |
5 |
练习册系列答案
相关题目