题目内容
【题目】一个多边形的每个外角都是60°,则这个多边形边数为
【答案】9【解析】解:360÷60=6.故这个多边形边数为6.故答案为:6.利用外角和除以外角的度数即可得到边数.
【题目】七年级某班有(3a﹣b)个男生和(2a+b)个女生,则男生比女生多人.
【题目】(2016广西省南宁市第24题)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
【题目】计算: ①33°52′+21°54′=;②18.18°=°′″.
【题目】有5条线段,它们的长度分别为1cm,2cm,3cm,4cm,5cm,以其中三条线段为边长,可组成不同的三角形的个数为( )A.3B.4C.5D.6
【题目】下列关于两个三角形全等的说法:
①三个角对应相等的两个三角形全等
②三条边对应相等的两个三角形全等
③有两边和它们的夹角对应相等的两个三角形全等
④有两边和其中一边上的高对应相等的两个三角形全等
正确的说法个数是( )
A.1个B.2个C.3个D.4个
【题目】下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.x2+2x+1=x(x+1)+1C.a2b+ab2=ab(a+b)D.(a-b)(n-m)=(b-a)(n-m)
【题目】在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为 米.(结果保留根号)
【题目】已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:
若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)
①则数轴上数3表示的点与数_______________表示的点重合.
②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是_________.
③若数轴上M、N两点之间的距离为2010,并且M、N两点经折叠后重合,
如果M点表示的数比N点表示的数大,则M点表示的数是________.则N点
表示的数是________.