题目内容

【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是

【答案】
【解析】解:如图,连接BD.

∵四边形ABCD是菱形,∠A=60°,

∴∠ADC=120°,

∴∠1=∠2=60°,

∴△DAB是等边三角形,

∵AB=2,

∴△ABD的高为

∵扇形BEF的半径为2,圆心角为60°,

∴∠4+∠5=60°,∠3+∠5=60°,

∴∠3=∠4,

设AD、BE相交于点G,设BF、DC相交于点H,

在△ABG和△DBH中,

∴△ABG≌△DBH(ASA),

∴四边形GBHD的面积等于△ABD的面积,

∴图中阴影部分的面积是:S扇形EBF﹣SABD= ×2× =

故答案是:

根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出答案。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网