题目内容

【题目】按要求回答问题:

(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;
(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;
(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则 的值是多少?(直接写出结论,不要求写解答过程)

【答案】
(1)

证明:作DF∥BC交AC于F,如图1所示:

则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,

∵△ABC是等腰三角形,∠A=60°,

∴△ABC是等边三角形,

∴∠ABC=∠ACB=60°,

∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,

∴△ADF是等边三角形,∠DFC=120°,

∴AD=DF,

∵∠DEC=∠DCE,

∴∠FDC=∠DEC,ED=CD,

在△DBE和△CFD中,

∴△DBE≌△CFD(AAS),

∴EB=DF,

∴EB=AD;


(2)

解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图2所示:

同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,

又∵∠DBE=∠DFC=60°,

∴在△DBE和△CFD中,

∴△DBE≌△CFD(AAS),

∴EB=DF,

∴EB=AD


(3)

解: = ;理由如下: 作DF∥BC交AC于F,如图3所示:

同(1)得:△DBE≌△CFD(AAS),

∴EB=DF,

∵△ABC是等腰直角三角形,DF∥BC,

∴△ADF是等腰直角三角形,

∴DF= AD,

=

=


【解析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF= AD,即可得出结果.本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网