题目内容

【题目】某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:

t

1

2

3

y2

21

44

69


(1)求a、b的值;
(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克? (说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)

【答案】
(1)解:根据表中的数据可得

答:a、b的值分别是1、20


(2)解:甲级干果和乙级干果n天售完这批货.

﹣n2+40n+n2+20n=1140

n=19,

当n=19时,y1=399,y2=741,

毛利润=399×8+741×6﹣1140×6=798(元),

答:卖完这批干果获得的毛利润是798元


(3)解:设从第m天起乙级干果每天的销量比甲级干果每天的销量至少多6千克,则甲、乙级干果的销售量为m天的销售量减去m﹣1天的销售量,

即甲级水果第m天所卖出的干果数量:(﹣m2+40m)﹣[﹣(m﹣1)2+40(m﹣1)]=﹣2m+41.

乙级水果第m天所卖出的干果数量:(m2+20m)﹣[(m﹣1)2+20(m﹣1)]=2m+19,

(2m+19)﹣(﹣2m+41)≥6,

解得:m≥7,

答:第7天起乙级干果每天的销量比甲级干果每天的销量至少多6千克


【解析】(1)根据表中的数据代入y2=at2+bt后,得到关于a,b的二元一次方程,从而可求出解.(2)设干果用n天卖完,根据两个关系式和干果共有1140千克可列方程求解.然后用售价﹣进价,得到利润.(3)设第m天乙级干果每天的销量比甲级干果每天的销量至少多6千克,从而可列出不等式求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网