题目内容

【题目】如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=2,则MN=

【答案】
【解析】解:设DH=x,CH=2﹣x,
由翻折的性质,DE=1,
EH=CH=2﹣x,
在Rt△DEH中,DE2+DH2=EH2
即12+x2=(2﹣x)2
解得x= ,EH=2﹣x=
∵∠MEH=∠C=90°,
∴∠AEN+∠DEH=90°,
∵∠ANE+∠AEN=90°,
∴∠ANE=∠DEH,
又∠A=∠D,
∴△ANE∽△DEH,
= ,即 ,解得EN= ,MN=ME﹣BC=2﹣ = ,所以答案是:
【考点精析】通过灵活运用翻折变换(折叠问题),掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网