题目内容
【题目】已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )
A. ac<0 B. a+b+c<0 C. b2﹣4ac<0 D. b=8a
【答案】D
【解析】根据二次函数的性质即可得出a,b,c的符号以及a+b+c的值,利用图象与x轴交点个数得出b2﹣4ac符号,以及利用对称轴得出b=8a.
解:∵图象开口向上,对称轴为直线:x=﹣4,
∴a,b同号,
∵图象与y轴交在y轴正半轴上,∴c>0,
∴A.ac>0,故此选项错误;
B.当x=1对应的函数图形上x轴上方,所以x=1,y=a+b+c>0,故此选项错误;
C.∵图象与x轴有两个交点,∴b2﹣4ac>0,故此选项错误;
D.∵x=﹣=﹣4,
∴b=8a,故此选项正确.
故选:D.
练习册系列答案
相关题目
【题目】小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为l800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:
制作普通花束(束) | 制作精致花束(束) | 所用时间(分钟) |
10 | 25 | 600 |
15 | 30 | 750 |
请根据以上信息,解答下列问题:
(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?
(2)2019年11月花店老板要求小华本月制作普通花束的总时间不少于3000分钟且不超过5000分钟,则小华该月收入最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?