题目内容
【题目】如图,四边形ABCD是矩形纸片,将△BCD沿BD折叠,得到△BED,BE交AD于点F,AB=3.AF:FD=1:2,则AF=_____.
【答案】.
【解析】
根据矩形的性质得到AD∥BC,∠A=90°,求得∠ADB=∠DBC,得到FB=FD,设AF=x(x>0),则FD=2x,求得FB=FD=2x,根据勾股定理列方程即可得到结论.
∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠ADB=∠DBC,
∵∠DBC=∠DBF,
∴∠ADB=∠DBF,
∴FB=FD,
∵AF:FD=1:2,
∴设AF=x(x>0),则FD=2x,
∴FB=FD=2x,
∵AB2+AF2=FB2,
∴32+x2=(2x)2,
∵x>0,
∴x=,
∴AF=,
故答案为:.
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
成绩x 学校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)
b.甲校成绩在这一组的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
学校 | 平均分 | 中位数 | 众数 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.