题目内容

【题目】解下列方程或不等式组
(1)用配方法解方程:x2﹣x=3x+5
(2)解不等式组: ,并判断﹣1, 这两个数是否为该不等式组的解.

【答案】
(1)解:∵x2﹣x=3x+5,

∴x2﹣4x﹣5=0,

∴(x+1)(x﹣5)=0,

∴x+1=0或x﹣5=0,

解得:x=﹣1或x=5


(2)解:解不等式x+2>0,得:x>﹣2,

解不等式3(x﹣1)+2≥2x,得:x≥1,

∴不等式组的解集为x≥1,

∵﹣1<1, >1,

是该不等式组的解


【解析】(1)因式分解法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【考点精析】掌握配方法和一元一次不等式组的解法是解答本题的根本,需要知道左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网