题目内容
【题目】已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,BE=DF.
(1)求证:AE=AF;
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
【答案】(1)证明见解析;(2) 四边形AEMF是菱形,理由见解析.
【解析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相垂直平分,根据对角线互相垂直且平分的四边形是菱形,即可判定四边形AEMF是菱形.
解:(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵AE=AF,
∴Rt△ABE≌Rt△ADF,
∴BE=DF;
(2)四边形AEMF是菱形.
∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形邻边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
易得△COE≌△COF,
∴OE=OF,
∵OM=OA,(对角线互相平分的四边形是平行四边形),
∴四边形AEMF是平行四边形,
∵AE=AF,
∴平行四边形AEMF是菱形.
“点睛”此题主要考查的是正方形的性质、全等三角形的判定和性质及菱形的判定.
练习册系列答案
相关题目