题目内容

【题目】如图,在等腰梯形中,为下底上一点(不与点重合),连接,过点作射线交线段于点,使得,若,则________

【答案】

【解析】

AF⊥BCF,∠B=60°,由等腰梯形的性质得到AFBC、AD差的一半,在Rt△ABF中,根据∠B的度数及BF的长可求得AB的值,由DE:EC=5:3时,求出DE、CE的值.由等腰梯形的性质可得出∠B=∠C,根据三角形外角的性质可证得∠EPC=∠BAP,可证△ABP∽△PCE,设BP的长为x,进而可表示出PC的长,然后根据相似三角形,可得出关于AB、BP、PC、CE的比例关系式,求出BP的长.

如图,过AAF⊥BCF;

等腰梯形ABCD中,AD=6cm,BC=14cm,

∴BF=4

∵Rt△ABF,∠B=60°,BF=4;

∴AB=CD=8cm,

∵DE:EC=5:3,

∴EC=3,

∠APC△ABP的外角得∠APC=∠B+∠BAP;

∵∠B=∠APE

∴∠EPC=∠BAP

∵∠B=∠C

∴△ABP∽△PCE,

=

BP=x,则PC=14x,

=

解得:x1=2,x2=12,

∴BP的长为212.

故答案为:212.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网