题目内容

【题目】一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有(

快车追上慢车需6小时;慢车比快车早出发2小时;快车速度为46km/h;④慢车速度为46km/h AB两地相距828km;⑥快车从A地出发到B地用了14小时

A. 2B. 3C. 4D. 5

【答案】B

【解析】

根据图形给出的信息求出两车的出发时间,速度等即可解答.

解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.

②慢车0时出发,快车2时出发,故正确.

③快车4个小时走了276km,可求出速度为69km/h,错误.

④慢车6个小时走了276km,可求出速度为46km/h,正确.

⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.

⑥快车2时出发,14时到达,用了12小时,错误.

故答案选B

练习册系列答案
相关题目

【题目】数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探宄问题,请你帮助他们完成整个探究过程;

(问题背景)

对于一个正整数n,我们进行如下操作:

1)将n拆分为两个正整数m1m2的和,并计算乘积m1×m2

2)对于正整数m1m2,分别重复此操作,得到另外两个乘积;

3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);

4)将所有的乘积求和,并将所得的数值称为该正整数的神秘值

请探究不同的拆分方式是否影响正整数n神秘值,并说明理由.

(尝试探究):

1)正整数12神秘值分别是

2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数67,重复上述过程

探究结论:

如图所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6神秘值15

请模仿小凯的计算方式,在如图中,选择另外一种拆分方式,给出计算正整数6神秘值的过程;对于正整数7,请选择一种拆分方式,在如图中绐出计算正整数7神秘值的过程.

(结论猜想)

结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n神秘值与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n神秘值的表达式为 ,(用含字母n的代数式表示,直接写出结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网