题目内容
【题目】如图,在△ABC中,点D、E、F分别在边BC、AB、CA上,且DE∥CA,DF∥BA.则下列说法:
①四边形AEDF是平行四边形;
②如果∠BAC=90°,那么四边形AEDF是矩形;
③如果AD平分∠BAC,那么四边形AEDF是菱形;
④如果∠BAC=90°,AD平分∠BAC,那么四边形AEDF是正方形.
其中正确的是______(只填写序号).
【答案】①②③④
【解析】
分别根据平行四边形的判定定理、菱形的判定定理、矩形的判定定理及正方形的判定定理对四个小题进行逐一判断即可.
∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,故①正确;
∵四边形AEDF是平行四边形,∠BAC=90°,
∴四边形AEDF是矩形,故②正确;
∵AD平分∠BAC,四边形AEDF是平行四边形,
∴四边形AEDF是菱形,故③正确;
∵若AD平分∠BAC,则平行四边形AEDF是菱形,
∴若∠BAC=90°,则平行四边形AEDF是正方形,故④正确.
故答案为:①②③④.
练习册系列答案
相关题目