题目内容
【题目】在括号中填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°( )
∴AB∥CD ( )
∴∠B= ( )
又∵∠B=∠D(已知 ),
∴∠D= ( )
∴AD∥BE( )
∴∠E=∠DFE( )
【答案】见详解.
【解析】
本题主要根据平行线的判定和性质来填写依据.
证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD( 同旁内角互补,两直线平行)
∴∠B=∠DCE( 两直线平行,同位角相等)
又∵∠B=∠D( 已知 ),
∴∠D=∠DCE( 等量代换)
∴AD∥BE( 内错角相等,两直线平行)
∴∠E=∠DFE( 两直线平行,内错角相等);
故答案为:已知;同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;∠DCE;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目