题目内容
【题目】我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:
(1)工人甲第几天生产的产品数量为70件?
(2)设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?
【答案】(1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.
【解析】(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.
本题解析:
解:(1)若7.5x=70,得x=>4,不符合题意;
则5x+10=70,
解得x=12.
答:工人甲第12天生产的产品数量为70件.
(2)由函数图象知,当0≤x≤4时,P=40,
当4<x≤14时,设P=kx+b,
将(4,40)、(14,50)代入,得解得
∴P=x+36.
①当0≤x≤4时,W=(60-40)·7.5x=150x,
∵W随x的增大而增大,
∴当x=4时,W最大=600;
②当4<x≤14时,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,
∴当x=11时,W最大=845.
∵845>600,
∴当x=11时,W取得最大值845元.
答:第11天时,利润最大,最大利润是845元.
【题目】某公园门票的收费标准如下:
门票类别 | 成人票 | 儿童票 | 团体票(限5张及以上) |
价格(元/人) | 100 | 40 | 60 |
有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元.
A.300B.260C.240D.220
【题目】对某批乒乓球质量进行随机调查,结果如下表;
随机抽取的乒乓球数 | 10 | 20 | 50 | 100 | 200 | 500 | 1000 |
优等品数 | 7 | 16 | 43 | 81 | 164 | 410 | 820 |
优等频率 | 0.7 | 0.8 | 0.86 | 0.81 | 0.82 | 0.82 |
(1)填表格中的空为_______.
(2)根据上表估计,在这批乒乓球中任取一个球,它为优等品的概率大约是________.(保留两位小数点)
(3)学校需要500个乒乓球的优等品,那么可以推测出最有可能进这批货的乒乓球个数是多少合适?(结果保留整数)