题目内容
如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E。
(1)求证:AB·AF=CB·CD;
(2)已知AB=15cm,BC=9cm,P是射线DE上的动点,设DP=xcm(x>0),四边形BCDP的面积为ycm2。
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值。
(1)求证:AB·AF=CB·CD;
(2)已知AB=15cm,BC=9cm,P是射线DE上的动点,设DP=xcm(x>0),四边形BCDP的面积为ycm2。
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值。
解:(1)∵,
∴DE垂直平分AC,
∴,∠DFA=∠DFC=90°,∠DAF=∠DCF,
∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,
∴∠DCF=∠DAF=∠B,
在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B,
∴△DCF∽△ABC,
∴,
即,
∴AB·AF=CB·CD;
(2)①∵AB=15,BC=9,∠ACB=90°,
∴,
∴,
∴;
②∵BC=9(定值),
∴△PBC的周长最小,就是PB+PC最小,
由(1)知,点C关于直线DE的对称点是点A,
∴PB+PC=PB+PA,故只要求PB+PA最小,
显然当P、A、B三点共线时PB+PA最小,
此时DP=DE,PB+PA=AB,
由(1),
得△DAF∽△ABC,EF∥BC,
得,EF=,
∴AF∶BC=AD∶AB,即6∶9=AD∶15,
∴AD=10,
Rt△ADF中,AD=10,AF=6,
∴DF=8,
∴,
∴当时,△PBC的周长最小,此时。
∴DE垂直平分AC,
∴,∠DFA=∠DFC=90°,∠DAF=∠DCF,
∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,
∴∠DCF=∠DAF=∠B,
在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B,
∴△DCF∽△ABC,
∴,
即,
∴AB·AF=CB·CD;
(2)①∵AB=15,BC=9,∠ACB=90°,
∴,
∴,
∴;
②∵BC=9(定值),
∴△PBC的周长最小,就是PB+PC最小,
由(1)知,点C关于直线DE的对称点是点A,
∴PB+PC=PB+PA,故只要求PB+PA最小,
显然当P、A、B三点共线时PB+PA最小,
此时DP=DE,PB+PA=AB,
由(1),
得△DAF∽△ABC,EF∥BC,
得,EF=,
∴AF∶BC=AD∶AB,即6∶9=AD∶15,
∴AD=10,
Rt△ADF中,AD=10,AF=6,
∴DF=8,
∴,
∴当时,△PBC的周长最小,此时。
练习册系列答案
相关题目