题目内容
【题目】如图,反比例函数y=(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=.
(1)求反比例函数的表达式;
(2)若点P是y轴上一动点,求PA+PB的最小值.
【答案】(1);(2)2
【解析】
(1)可得点D的坐标为:,点A(m,4),即可得方程4m=(m+2),继而求得答案;
(2)作点A关于y轴的对称点E,连接BF交y轴于点P,可求出BF长即可.
解:(1)∵CD∥y轴,CD=,
∴点D的坐标为:(m+2,),
∵A,D在反比例函数y=(x>0)的图象上,
∴4m=(m+2),
解得:m=1,
∴点A的坐标为(1,4),
∴k=4m=4,
∴反比例函数的解析式为:y=;
(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则PA+PB的值最小.
∴PA+PB=PF+PB=BF=.
【题目】为弘扬中华优秀传统文化,某校组织了“古诗词”知识竞赛,由九年级的若干名学生参加选拔赛,从中选出10名优胜者,下面是对参赛学生成绩的不完整统计.
(1)统计表中,=_____;各组人数的中位数是_____;统计图中,组所在扇形的圆心角是_____°;
(2)李明同学得了88分,他说自己在参加选拔赛的同学中属于中午偏上水平,你认为他说的有道理吗?为什么?
(3)选出的10名优胜者中,男生、女生的分布情况如下表.
一班 | 二班 | 三班 | 四班 | 五班 | 六班 | |
男生人数 | 1 | 1 | 2 | 1 | 0 | 0 |
女生人数 | 1 | 0 | 0 | 2 | 1 | 1 |
若从中任选1名男生和1名女生代表学校参加全区的比赛,请有列表法或画树状图法求男生和女生都出在四班的概率.
【题目】丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成 5 组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A 班:80 80 82 83 85 85 86 87 87 87 88 89 89
B 班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根据以上信息,请写出表中 m、n的值____________.