题目内容

【题目】如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.

(1)求抛物线的解析式;
(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;

(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.

【答案】
(1)

解:∵矩形OBDC的边CD=1,

∴OB=1,

∵AB=4,

∴OA=3,

∴A(﹣3,0),B(1,0),

把A、B两点坐标代入抛物线解析式可得 ,解得

∴抛物线解析式为y=﹣ x2 x+2;


(2)

解:在y=﹣ x2 x+2中,令y=2可得2=﹣ x2 x+2,解得x=0或x=﹣2,

∴E(﹣2,2),

∴直线OE解析式为y=﹣x,

由题意可得P(m,﹣ m2 m+2),

∵PG∥y轴,

∴G(m,﹣m),

∵P在直线OE的上方,

∴PG=﹣ m2 m+2﹣(﹣m)=﹣ m2 m+2=﹣ (m+ 2+

∵直线OE解析式为y=﹣x,

∴∠PGH=∠COE=45°,

∴l= PG= [﹣ (m+ 2+ ]=﹣ (m+ 2+

∴当m=﹣ 时,l有最大值,最大值为


(3)

解:①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,

则∠ALF=∠ACO=∠FNM,

在△MFN和△AOC中

∴△MFN≌△AOC(AAS),

∴MF=AO=3,

∴点M到对称轴的距离为3,

又y=﹣ x2 x+2,

∴抛物线对称轴为x=﹣1,

设M点坐标为(x,y),则|x+1|=3,解得x=2或x=﹣4,

当x=2时,y=﹣ ,当x=﹣4时,y=

∴M点坐标为(2,﹣ )或(﹣4,﹣ );

②当AC为对角线时,设AC的中点为K,

∵A(﹣3,0),C(0,2),

∴K(﹣ ,1),

∵点N在对称轴上,

∴点N的横坐标为﹣1,

设M点横坐标为x,

∴x+(﹣1)=2×(﹣ )=﹣3,解得x=﹣2,此时y=2,

∴M(﹣2,2);

综上可知点M的坐标为(2,﹣ )或(﹣4,﹣ )或(﹣2,2).


【解析】(1)由条件可求得A、B的坐标,利用待定系数法可求得抛物线解析式;(2)可先求得E点坐标,从而可求得直线OE解析式,可知∠PGH=45°,用m可表示出PG的长,从而可表示出l的长,再利用二次函数的性质可求得其最大值;(3)分AC为边和AC为对角线,当AC为边时,过M作对称轴的垂线,垂足为F,则可证得△MFN≌△AOC,可求得M到对称轴的距离,从而可求得M点的横坐标,可求得M点的坐标;当AC为对角线时,设AC的中点为K,可求得K的横坐标,从而可求得M的横坐标,代入抛物线解析式可求得M点坐标.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网