题目内容
【题目】小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是______m,他途中休息了______min,休息后继续行走的速度为______m/min;
(2)当时,求y与x的函数关系式;
(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
【答案】(1)3600,20,55;(2)y=55x-800;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是1100m.
【解析】
(1)观察函数图象,可找出小亮行走的总路程及途中休息的时间,再利用速度=路程÷时间可求出小亮休息后继续行走的速度;
(2)观察图象,找出点的坐标,利用待定系数法即可求出:当50≤x≤80时,y与x的函数关系式;
(3)利用小颖到达终点所用的时间=乘坐缆车的总路程÷缆车的平均速度可求出小颖到达终点所用的时间,用其加上50可求出小颖到达终点时小亮所用时间,再利用小亮离缆车终点的路程=小亮休息后继续行走的速度×(到达终点的时间-小颖到达终点时小亮所用时间)即可求出结论.
解:(1)观察函数图象,可知:小亮行走的总路程是3600m,
小亮途中休息的时间为:50-30=20(min),
休息后继续行走的速度为:(3600-1950)÷(80-50)=55(m/min).
故答案为:3600;20;55.
(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b(k≠0),
由图象知:点(50,1950)与点(80,3600)在直线上,
∴,解得:,
∴当50≤x≤80时,y与x的函数关系式为y=55x-800.
(3)小颖到达终点所用的时间为1800÷180=10(分钟),
∴小颖到达终点时小亮已用时50+10=60(分钟),
∴小亮离缆车终点的路程为55×(80-60)=1100(m).
答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100m.
【题目】根据某市个人住房房产税征收管理细则,高档住房建筑面积交易单价达到上一年主城区商品住房面积均价的2倍开始征收房产税,2倍(含2倍)到3倍的住房,房产税年税率为0.5%;3倍(含3倍)至4倍的,房产税税率为1%;4倍(含4倍)以上房产税税率为1.2%.细则规定,买房后第二年开始交房产税.相关数据如下表:
征税年份 | 上一年主城区商品房成交建筑面积均价 |
2016年 | 2015年均价6600元/m2 |
2017年 | 2016年均价7000元m2 |
2018年 | 2017年均价7800元m2 |
个人住房房产税应纳税额的计算公式:年应纳税额=建筑面积×建筑面积交易单价×年税率(例如:2015年建筑面积成交单价为20000元/m2的一套100m2商品房,2016年开始第一次交房产税,因6600×3<20000<6600×4,故2016年应交房产税100×20000×1%=20000元,因7000×2<20000<7000×3,故2017年应交房产税=100×20000×0.5%=10000元)
(1)老朱2016年买了一套建筑面积为150m2的大平层户型,2017年交了12000元的房产税,请问老朱买的房子的建筑面积成交单价是多少元/m2?
(2)2017年老张买了和老朱同户型的一套房,建筑面积单价有所上涨,老张通过计算发现,他2017年购房房款与2018年需缴纳的房产税之和比老朱2016年购房房款与2017、2018两年需缴纳的房产税之和多花了121.2万元,问2017年老张买房时建筑面积单价是多少元/m2?